Showing posts with label Imec. Show all posts
Showing posts with label Imec. Show all posts

Tuesday, August 17, 2021

Xanadu and imec target photonic qubits in silicon nitride waveguides

Xanadu, a start-up based in Toronto, announced a partnership with imec to develop photonic qubits based on ultra-low loss silicon nitride (SiN) waveguides.

imec is a leading research and innovation center in nanoelectronics and digital technologies based in Belgium. 

Xanadu is developing a unique type of quantum computer powered by photonic qubits based on squeezed states - a special type of light generated by chip-integrated silicon photonic devices. Such an approach uses particles of light to carry information through photonic chips, rather than electrons or ions used by other approaches. 

Xanadu said its photonic approach offers the benefits of scalability to one million qubits via optical networking, room temperature computation, and the natural ability to leverage fabrication R&D centers such as imec. Xanadu is using silicon nitride to enable the generation of squeezed states, which replace single photons as the basic resource for synthesizing qubits. Squeezed states are deterministically generated, and can be used to distill error-resistant qubits called 'GKP states'. When multiplexed and implemented in Xanadu's architecture, these offer a more promising path to fault-tolerant quantum computing. 

Amin Abbasi, business development manager at imec: "We are pleased to see that imec's wafer-scale low loss SiN photonics platform, initially developed for communication, is finding its way towards other advanced applications, like quantum computing. We look forward to working with Xanadu to drive further development of this platform for their particular needs."

"We are pleased to partner with Xanadu, one of the most exciting companies working in the quantum computing space." said Philippe Helin, specialty components program manager at imec. "Xanadu's mission to build photonic quantum computers matches perfectly with imec's track record of and commitment to pushing the leading edge of integrated technologies," adds Haris Osman, VP R&D and head of department.

"One of the most critical challenges in building a photonic quantum computer is finding the right fabrication partner that can simultaneously deliver cutting-edge process development and volume production of high performing photonic chips," said Zachary Vernon, who heads up Xanadu's Hardware team. "Imec is one of the few semiconductor R&D centers that does advanced technology R&D on advanced 200mm and 300mm lines, as well as volume manufacturing on their 200mm line, capable of delivering up to a thousand wafers per year per customer on a few platforms including ultralow-loss photonic platforms. The seamless transfer offered by imec of new processes to production is especially critical for rapid scaling of our technology." 

Tuesday, March 30, 2021

Imec demos ultrasound sensor in silicon photonics

Imec, a leading research and innovation hub in Belgium, has demonstrated an optomechanical ultrasound sensor on a silicon photonic chip that has an unprecedented sensitivity due to an innovative optomechanical waveguide.

By leveraging this high-sensitivity waveguide, Imec's 20-µm small sensor has a detection limit two orders of magnitudes better than piezoelectric elements of identical size. 

Potential clinical and biomedical applications of ultrasonic and photoacoustic imaging include deep-tissue mammography and the study of vascularization or innervation of potential tumorous tissue. 

 “The sensor we have demonstrated will be a gamechanger for deep tissue imaging in otherwise non-transparent tissues such as skin or brain. For applications such as sub-cutaneous melanoma imaging or mammography, it enables a more detailed view of the tumor and vascularization around, aiding in a more detailed diagnosis,” says Xavier Rottenberg, fellow wave-based sensors and actuators at imec.

Imec said its solution is based on a highly sensitive split-rib optomechanical waveguide fabricated using new CMOS-compatible processing. The sensitivity is two orders of magnitude larger than a state-of-the-art device. A low detection limit can improve the trade-off between imaging resolution and depth for ultrasound applications, and is crucial for photoacoustic imaging, where pressures are up to three orders of magnitude lower than in conventional ultrasound imaging techniques. 

Finally, a fine-pitched (30 µm) matrix of these tiny (20 µm) sensors can be easily integrated on-chip with photonic multiplexers. This opens the possibility of new applications such as miniaturized catheters because the sensor matrices require only few optical fibers to be connected instead of one electrical connection per element in the case of piezoelectric sensors.

Saturday, October 31, 2015

Indium Phosphide Lasers Monolithically Grown on 300nm Silicon

Imec and Ghent University demonstrated for the first time the ability to grow indium phosphide lasers monolithically integrated on 300mm silicon substrates in a CMOS pilot line.

The researchers used a production grade metal-organic vapor-phase epitaxial (MOVPE) growth reactor to grow an indium phosphide semiconductor in a pre-patterned oxide template , realizing indium phosphide waveguide arrays across the entire 300mm substrate.

Such laser-powered photonic integrated circuits (PICs) could be used to interface between future logic and memory chips.

Australian Researchers Build Quantum Logic Gate in Silicon

Researchers at the University of New South Wales in Australia have built a quantum logic gate in silicon for the first time -- a major step toward quantum computers. “We’ve demonstrated a two-qubit logic gate – the central building block of a quantum computer – and, significantly, done it in silicon. Because we use essentially the same device technology as existing computer chips, we believe it will be much easier to manufacture a full-scale processor...

IBM Charts Post-Silicon Future with Carbon Nanotube

IBM researchers have demonstrated announced a new transistor contact approach that could accelerate the use carbon nanotubes as a replacement for silicon. Previously, IBM shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – less than half the size of today’s leading silicon technology. IBM's new contact approach overcomes the other major hurdle in incorporating carbon nanotubes...

IBM Implements 100G Optical Transceiver in Sub-100nm CMOS

IBM announced another significant advancement with is CMOS integrated nano-photonics technology. The company said its researchers for the first time have tested a fully integrated wavelength multiplexed silicon photonics chip, which will soon enable manufacturing of 100 Gbps optical transceivers. The design implements multiple optical components side-by-side with electrical circuits on a single silicon chip using sub-100nm CMOS technology. “Making...

100G and Beyond - @Huawei Comments at #OFC2015

What changes will we see as network transport evolves to 100G and beyond? Peter Ashwood-Smith, Technical VP of Optical Product Line at Huawei, breaks it down into a discussion of the control layer and the physical interface.  He sees 100G as the "workhorse" of optical transport for the next 3-5 years. We'll see improvements in density and the adoption on pluggable formats in 100G interfaces. Another factor for 100G is silicon photonics. See...

Luxtera Debuts 100G QSFP28 Module and Silicon Photonics Chipset

At this week's #OFC2015 in Los Angeles, Luxtera confirmed commercial availability of its 100G-PSM4 compliant chipset and QSFP optical module. The company said its low cost single mode products  make it well positioned for an industry-shift from copper and legacy multimode fiber to single mode fiber at volume scale. LUX42604 Key Features 100Gb optical transceiver QSFP28 compliant module form-factor Four 4 x 26 Gbps independently operating...

Mellanox Intros Next Gen 100 Gbps Silicon Photonics Transceivers

Mellanox Technologies introduced three new LinkX 100 Gb/s solutions that support the high-density, low-power, QSFP28 connector-based Switch-IB switch platform. The Switch-IB 36-port 100Gb/s InfiniBand switch delivers 7.2Tb/s of aggregate throughput in a 1U, making it the world’s highest performance, ultra-dense end-to-end platform. Mellanox said the robustness and density of standard QSFP connectors and cables enables 100Gb/s networks to be as...