Showing posts with label DoE. Show all posts
Showing posts with label DoE. Show all posts

Thursday, July 23, 2020

Blueprint for the Quantum Internet

The U.S. Department of Energy (DOE) outlined a blueprint strategy for the development of a national Quantum Internet.

The DoE's 17 national laboratories will serve as the first nodes on the Quantum Internet. Also participating will be the National Science Foundation, the Department of Defense, the National Institute for Standards and Technology, the National Security Agency, and NASA. The academic community and industry will also be invited.

At a launch event hosted by the University of Chicago, officals described the initiative as "bringing the United States to the forefront of the global quantum race and ushering in a new era of communications."

“The Department of Energy is proud to play an instrumental role in the development of the national quantum internet,” said U.S. Secretary of Energy Dan Brouillette. “By constructing this new and emerging technology, the United States continues with its commitment to maintain and expand our quantum capabilities.”

In February, scientists from DOE’s Argonne National Laboratory in Lemont, Illinois, and the University of Chicago entangled photons across a 52-mile “quantum loop” in the Chicago suburbs, successfully establishing one of the longest land-based quantum networks in the nation. That network will soon be connected to DOE’s Fermilab in Batavia, Illinois, establishing a three-node, 80-mile testbed.

“The combined intellectual and technological leadership of the University of Chicago, Argonne, and Fermilab has given Chicago a central role in the global competition to develop quantum information technologies,” said Robert J. Zimmer, president of the University of Chicago. “This work entails defining and building entirely new fields of study, and with them, new frontiers for technological applications that can improve the quality of life for many around the world and support the long-term competitiveness of our city, state, and nation.”

 “Argonne, Fermilab, and the University of Chicago have a long history of working together to accelerate technology that drives U.S. prosperity and security,” said Argonne Director Paul Kearns. “We continue that tradition by tackling the challenges of establishing a national quantum internet, expanding our collaboration to tap into the vast power of American scientists and engineers around the country.”

Video of the event
https://www.youtube.com/watch?v=cR0wVCs9DxI

Technical report: From Long-distance Entanglement to Building a Nationwide Quantum Internet
https://www.osti.gov/biblio/1638794/

Thursday, April 9, 2015

Intel and Cray to Build Next Gen Supercomputers for DoE

Intel and Cray have been selected to build two next generation, high-performance computing (HPC) systems that will be five to seven times more powerful than the fastest supercomputers today.

Intel will serve as prime contractor to deliver the supercomputers for the U.S. Department of Energy’s (DOE) Argonne Leadership Computing Facility (ALCF). The Aurora system will be based on Intel’s HPC scalable system framework and will be a next-generation Cray “Shasta” supercomputer. Intel said the Aurora system will be delivered in 2018 and have a peak performance of 180 petaflops, making it the world’s most powerful system currently announced to date. Aurora will use future generations of Intel Xeon Phi processors and the Intel Omni-Path Fabric high-speed interconnect technology, a new non-volatile memory architecture and advanced file system storage using Intel Lustre software.

A second system, to be named Theta, will serve as an early production system for the ALCF. To be delivered in the 2016, the system will provide performance of 8.5 petaflops while requiring only 1.7 megawatts of power. The Theta system will be powered by Intel Xeon processors and next-generation Intel Xeon Phi processors, code-named Knights Landing, and will be based on the next-generation Cray XC supercomputer.

“The Aurora system will be one of the most advanced supercomputers ever built, and Cray is honored and proud to be collaborating with two great partners in Intel and Argonne National Lab,” said Peter Ungaro, president and CEO of Cray. “The combination of Cray’s vast experience in building some of the world’s largest and most productive supercomputers, combined with Intel’s cutting-edge technologies will provide the ALCF with a leadership-class system that will be ready for advancing scientific discovery from day one.”

http://newsroom.intel.com/community/intel_newsroom/blog/2015/04/09/chip-shot-intel-selected-by-us-department-of-energy-to-deliver-nations-most-powerful-supercomputer

In November 2014, Intel announced that its third-generation Intel Xeon Phi product family, code-named Knights Hill, will be built using Intel's 10nm process technology and integrate Intel Omni-Path Fabric technology. Knights Hill will follow the upcoming Knights Landing product, with first commercial systems based on Knights Landing expected to begin shipping next year.

Intel also disclosed that its Intel Omni-Path Architecture will achieve 100 Gbps line speed and up to 56 percent lower switch fabric latency in medium-to-large clusters than InfiniBand alternatives. The architecture targets a 48 port switch chip compared to the current 36 port InfiniBand alternatives. This will reduce the number of switches required in HPC clusters.

Monday, November 17, 2014

IBM Lands $325M Contracts for Supercomputers in National Labs

The U.S. Department of Energy has awarded IBM contracts valued at $325 million to develop and deliver the world’s most advanced “data centric” supercomputing systems at Lawrence Livermore and Oak Ridge National Laboratories.

IBM said its new systems will employ a “data centric” approach that puts computing power everywhere data resides, minimizing data in motion and energy consumption. These OpenPOWER-based systems are expected to offer five to 10 times better performance on commercial and high-performance computing applications compared to the current systems at the labs, while being more than five times more energy efficient.

The “Sierra” supercomputer at Lawrence Livermore and “Summit” supercomputer at Oak Ridge will each have a peak performance well in excess of 100 petaflops balanced with more than five petabytes of dynamic and flash memory to help accelerate the performance of data centric applications. IBM's design will be capable of moving data to the processor, when necessary, at more than 17 petabytes per second (which is equivalent to moving over 100 billion photos on Facebook in a second).

http://www.ibm.com


Sunday, November 17, 2013

Department of Energy Funds Research in Next-Gen SuperComputer Interconnects

The Department of Energy’s (DOE) Office of Science and the National Nuclear Security Administration (NNSA) have awarded $25.4 million in research and development contracts to five leading companies in high-performance computing (HPC) to accelerate the development of next-generation supercomputers.

Under DOE’s new DesignForward initiative, AMD, Cray, IBM, Intel Federal and NVIDIA will work to advance extreme-scale, on the path to exascale, computing technology. The contracts, which cover a two-year performance period, will support the design and evaluation of interconnect architectures for future advanced HPC architectures. Such interconnects will tie together hundreds of thousands or millions of processors, as building blocks of supercomputers to be used in studying complex problems in unprecedented detail.  Intel will focus on interconnect architectures and implementation approaches, Cray on open network protocol standards, AMD on interconnect architectures and associated execution models, IBM on energy-efficient interconnect architectures and messaging models and NVIDIA on interconnect architectures for massively threaded processors.

“Exascale computing is key to NNSA’s capability of ensuring the safety and security of our nuclear stockpile without returning to underground testing,” said Robert Meisner, director of the NNSA Office of Advanced Simulation and Computing program. “The resulting simulation capabilities will also serve as valuable tools to address nonproliferation and counterterrorism issues, as well as informing other national security decisions.”

“In an era of fierce international HPC competition, the development of exascale computing becomes critical not only to our national security missions but to the nation’s economic competitiveness in the global marketplace,” said William Harrod, FastForward Program Manager and Research Division Directorfor DOE’s Advanced Scientific Computing Research program. “This partnership between industry, the DOE Office of Science and NNSA supports the development of technology to overcome the obstacles on the road to exascale systems.”

http://www.nersc.gov/news-publications/news/nersc-center-news/2013/department-of-energy-awards-25-4-million-in-contracts-for-extreme-scale-supercomputer-interconnect-design/