Monday, September 27, 2021

HyperLight and Nokia Bell Labs demonstrate 300 GBd for PAM-4

HyperLight, a start-up based in Cambridge, MA developing thin-film lithium niobate (LN) photonic integrated circuits (PICs), and Nokia Bell Labs demonstrated a new record-breaking high-speed data transmission using its ultrahigh bandwidth, linear, and low noise thin-film lithium niobate Mach Zehnder (MZM) modulator.

Using a HyperLight photonic chip, Nokia Bell Labs demonstrated a low complexity faster than Nyquist scheme without transmitter pre-processing achieving a record symbol rate of 300 GBd for PAM-4 and 570 GBd for OOK using a 100-GHz digital-band interleaved digital-to-analog converter together with HyperLight’s low voltage, linear, and low noise, 100-GHz thin-film LiNbO3 Mach Zehnder modulator (MZM). 

HyperLight says this pre-processing-free faster than Nyquist technique could be crucial for future co-packaged optics to drive the optics directly by the SerDes output without the power-hungry digital signal regeneration.

The details of these demonstrations were presented at the ECOC 2021 post-deadline sessions. The authors of the paper include Di Che and Xi Chen from Nokia Bell Labs.

In addition, HyperLight, together with Karlsruhe Institute of Technology (KIT) and Swiss Federal Institute of Technology Lausanne (EPFL), demonstrated the first ultra-broadband Analog-to-Digital converter with a record-high acquisition bandwidth of 320 GHz. This is a significant milestone achieved using HyperLight's high bandwidth thin-film lithium niobate modulator which allowed the imprinting of radio frequency signal on an optical carrier and enabled the direct modulation of data at a record high carrier frequency of 300 GHz.

The paper authors include HyperLight CEO and Co-founder, Dr. Mian Zhang, Head of Devices, Dr. Prashanta Kharel, D. Fang, D. Drayss, G. Lihachev, P. Marin-Palomo, H. Peng, C. Füllner, A. Kuzmin, J. Liu, R. Wang, V. Snigirev, A. Lukashchuk, J. Witzens, C. Scheytt, W. Freude, S. Randel, T. J. Kippenberg, and C. Koos.

HyperLight claims breakthrough with its lithium niobate optical modulator

HyperLight, a start-up based in Cambridge, MA developing thin-film lithium niobate (LN) photonic integrated circuits (PICs), announced breakthrough voltage-bandwidth performances in integrated electro-optic modulators. 

HyperLight says its electro-optic PIC could lead to orders of magnitude energy consumption reduction for next generation optical networking.

Current electro-optic modulators require extremely high radio-frequency (RF) driving voltages (> 5 V) as the analog bandwidth in ethernet ports approaches 100 GHz for future terabits per sec capacity transceivers. In comparison, a typical CMOS RF modulator driver delivers less than 0.5 V at such frequencies. Compound semiconductor modulator drivers can deliver voltage > 1 V at significantly increased cost and energy consumption but still fall short to meet the optimum driving voltage. The limited voltage-bandwidth performance in electro-optic modulators poses a serious challenge for meeting tight power consumption requirements from network builders.

HyperLight's integrated electro-optic modulator is capable of 3-dB bandwidth > 100 GHz, a previously impossible voltage-bandwidth achievement. The results are described in a manuscript entitled “Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes,” published in Optica on March 8th, 2021.

“We believe the significantly improved electro-optic modulation performance in our integrated LN platform will lead to a paradigm shift for both analog and digital ultra-high speed RF links,” said Mian Zhang, author, CEO of HyperLight. “For example, using sub-volt modulators for digital applications, high speed electronic drivers may have largely reduced gain-bandwidth requirements or possibly be completely bypassed with modulators directly driven from electronic processors. This would save building and running costs for network operators. For RF links, the low-voltage, high bandwidth and excellent optical power handling ability could enable sensitive and low noise millimeter wave (mmWave) photonic links in ultrahigh-frequency bands.”