Friday, March 17, 2017

NeoPhotonics Demos Coherent Transceiver for 400/600Gbps

At this week's Optical Fiber Communications (OFC) Conference and Exhibition in Los Angeles NeoPhotonics will demonstrate its pluggable Coherent CFP2-ACO module for 400G and up on a single wavelength over metro distances.

The NeoPhotonics' ClearLight CFP2-ACO Platform is capable of achieving single wavelength 200G, 400G and 600 Gbps transmission over Data center Interconnect through metro/regional distances.

The company said its ClearLight CFP2-ACO platform uses next generation optical components which are based on platforms that have been proven in volume production for 100G and 200G network applications. The platform uses NeoPhotonics’ high bandwidth Class 40 Coherent Receiver capable of 64Gbaud with 16-QAM to 64-QAM modulation.  This high bandwidth receiver maintains high sensitivity to simplify migration from 100G to 200G and 400G links.  The platform also uses NeoPhotonics’ industry leading high power, external cavity, ultra-narrow line width tunable laser with low power consumption. The ultra-narrow line widths enables higher order constellations with less processing requirements from the DSP.


The ClearLightTM  64 Gbaud CFP2-ACO demonstrates the ability to scale data capacity to 400G/600G on a single wavelength while maintaining performance and link budgets in DCI or metro/regional links.  The data capacity scaling optimizes the cost per bit and thus enables broad deployment of coherent transmission from short to long reaches.

"Our new ClearLightTM 64 Gbaud CFP2-ACO 400G/600G pluggable coherent transponder demonstrates a powerful new platform for NeoPhotonics which is capable of efficiently implementing 400G to 600G transmission networks," said Tim Jenks, Chairman and CEO of NeoPhotonics. "This exciting new platform is made possible by our Advanced Hybrid Photonic Integration technology utilizing our latest advances in high bandwidth receivers and ultra-narrow linewidth lasers in conjunction with higher order modulation, " continued Mr. Jenks.

http://www.neophotonics.com

0 comments:

Post a Comment

See also