Thursday, March 26, 2015

Blueprint: The 5 Fundamentals of Building the New Enterprise WAN

by Mary Stanhope, Vice President of Marketing, Global Capacity

Wide Area Network (WAN) architectures are changing to meet the evolving needs of business. WANs are the critical component of any medium and large enterprise data environment, connecting locations, people, and systems, and transporting data to support day-to-day and critical business operations. As businesses expand geographically across the US, outside of major metropolitan cities into cost-effective rural locations as well as international business centers, their need to connect a larger and distributed workforce with business applications expands in complexity.

While enterprise business is expanding geographically, WAN architectures also need to evolve to support the growing use of the cloud and the sheer volume of real-time, interactive business applications being deployed outside of headquarters’ brick and mortar. This year alone, enterprises predict they will increase their spending on cloud computing by 42% according to IDG’s Computerworld Forecast Study 2015. Furthermore, enterprises also plan to allocate more budget to both collaborative and enterprise applications, which IDC predicts will show fluctuating CAGR rates of 6-8% into 2017.

Evolving the Traditional WAN

Since the late 90’s, enterprises have turned to the Multi-Protocol Label Switching (MPLS) architecture solution to interconnect branch offices to each other because it offers any-to-any connectivity for thousands of sites combined with Quality of Service (QoS) for packet prioritization.  Unlike the standard IP table lookups performed by non-MPLS routers, MPLS’ label switching technology enables faster lookups for destinations and routing.   Interconnecting thousands of sites, such as branch offices and data centers, and handling any-to-any traffic patterns is simplified by MPLS’ routed architecture and Layer-3 IP Virtual Private Networks (VPNs). While, MPLS remains a popular WAN connectivity option, it is no longer the total solution. The evolution of the enterprise has created a need for alternative and complementary access services.

Single provider, single technology WAN architectures no longer cost-effectively satisfy the complex needs of today’s medium and large enterprises. Different technologies and services may work better in connecting different business locations. When interconnecting data centers, the most common alternative to MPLS is Carrier Ethernet.

The advantage to Carrier Ethernet is that the bandwidth is lower cost and the services are easy to set up.  Connectivity to cloud computing is better served by Carrier Ethernet rather than MPLS due to its higher bandwidth connectivity to and between datacenters. In contrast, Carrier Ethernet services do not scale to the same magnitude of sites as MPLS. So, it is best used for a subset of locations requiring high-bandwidth such as data centers and headquarters.

MPLS services are most available in metropolitan areas, but not everywhere. When it comes to remote offices that only require Internet connectivity to be successful, Internet access or Broadband are best used for lower cost and ubiquitous coverage. Sometimes, these are business- grade Service Level Agreement (SLA) Internet services; alternatively they are "best effort" offerings.

Today, there is no single WAN technology that effectively meets every single requirement across enterprise applications and locations.

The Hybrid WAN

Today’s business WAN requires designing the right connectivity for the right application at the right location. For many enterprises, this means deploying multi-service WAN switches at the edge of the network to connect to multiple services such as Internet, Session Initiation Protocol (SIP), Software-as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS), and storage over the same aggregated connection. For others, it involves implementing multi-network, multi-geography WANs built from a hybrid of technologies, including Dedicated Internet Access (DIA) to remote offices with lower bandwidth needs, Carrier Ethernet between headquarters and data centers, and a combination of MPLS and Ethernet connectivity based on availability and pricing between locations.  The new WAN encompasses multiple technologies and locations in order to support multiple bandwidths and performance levels.

Appropriately sizing connectivity to the location, users and applications being used at each enterprise office is imperative to successful WAN performance. With the fractured nature of today’s telecommunication access market, however, this is often easier said than done.

The Five Fundamentals of Building the New WAN 

The need for MPLS, Carrier Ethernet, and Internet access across disparate locations and geographies creates a new complexity for IT and network teams to design WANs. Where buying managed services from a local exchange providers may have been a one-stop solution for an MPLS WAN, the evolving architecture requires a modern approach and tool set to design, order, and manage evolving WAN connectivity.

So, how does any one enterprise effectively design, manage, and maintain the new WAN, and how can this process be simplified? One solution is to leverage a network marketplace for visibility into service options, pricing, and availability. A marketplace of networks offers enterprises connectivity as a service through aggregated network bandwidth combined with an online self-service application to design, order, and deliver services. A network marketplace simplifies the complexity of procuring the new WAN with five fundamental attributes:

1. Visibility – To make informed decisions, Network designers need to have increased visibility into the network availability, technology, and pricing connecting their business locations. Network-building tools need to provide transparency into the fractured nature of today’s telecommunication access market to optimize the cost and performance of connectivity.

2. “What-if” Modeling - “What-if” modeling scenarios greatly simplify designing optimal, purpose-built WANs. With “what-if” modeling capabilities, anyone can enter an address and filter connectivity options based on specific service criteria, including data center locations, service technologies, latency, contract term, and price point to design the optimal WAN that meets specific business objectives.

3. Real-Time Pricing – Enterprises are dynamic and growing, with new locations being added through expansion, mergers, and acquisitions. Access to real-time, automated pricing of network connectivity allows IT teams to make timely decisions on connecting new locations and expanding existing ones.  

4. Ease of Ordering – We are all used to the convenience of online ordering. After spending the time to design and price the optimal WAN, enterprise IT and network teams need to be able to transact on their design without delay. A digital marketplace allows for immediate transactions that deliver the network with a single master service agreement, supporting SLAs, and invoice, as opposed to proposals, orders and provisioning from multiple network service providers.

5. Simplify – Because WANs are growing in complexity and requirements, tools need to be made available that leverage data and automation to simplify the experience for the IT professional. A network marketplace can be used not only to simplify connectivity in today’s fractured market, but also for added control, efficiency, and optimized performance and cost.

Leveraging a digital network marketplace, enterprises with thousands of sites can easily design their WAN without laborious RFP processes and accurately choose and price different solutions for quality, performance, and location. With added visibility into the marketplace, enterprises realize substantial cost savings by connecting the right applications to the right locations with the right services for optimal network performance and price. The evolving WAN demands a new method of network design, build, and management, delivered exclusively, cost-effectively, and simply by the digital network marketplace.

About the Author

Mary Stanhope is Vice President of Marketing for Global Capacity.  Ms. Stanhope is responsible for the strategic positioning and go to market of Global Capacity’s products and services. She has over 23 years in the communications industry, holding business development and product marketing roles of increasing responsibility with companies such as Sidera Networks, RCN, Teleport Communications, Atos Origin and SchlumbergerSema.  From the introduction of SMS and prepaid wireless to the development of online communities and launch of Ethernet and cloud services, Ms. Stanhope has been a pioneer for architecting change in how businesses and people communicate as recognized by Fierce Telecom 2013 Top 10 Women in Wireline.  She is an active participant in the MEF and Light Reading Ethernet Executive Council.  Ms. Stanhope holds a B.A. degree from Syracuse University in Syracuse, NY.




Got an idea for a Blueprint column?  We welcome your ideas on next gen network architecture.
See our guidelines.


Huawei Unveils ONOS-based IP + Optical and Transport

Huawei demonstrated an IP + optical and Transport Software-Defined Networking (TSDN) implementation the based on the Open Network Operating System (ONOS).

The application shown at this week's #OFC2015 show in Los Angeles comprised a number of features including a graphical multi-layer network view of the SDN application system, automatic resource discovery, automatic IP link setup, automatic service provisioning and multi-layer network protection. Huawei also presented bandwidth-on-demand (BoD), transport network virtualization and innovative VTS2.0 applications, which provide network level services that can be customized by tenants, as well as cloud-like resilience.

The demo used the Huawei ONOS-based Smart Network Controller (SNC) and NetMatrix service synergy platform to remotely control a real network constructed with Huawei NE series routers and Huawei OptiX OSN series smart optical devices located in Dallas, Texas.

http://www.huawei.com

PMC Unveils OTN-based Fronthaul for C-RAN Architecture

PMC-Sierra unveiled an OTN-based solution for fronthaul networking in Centralized Baseband RAN (C-RAN) architectures used for LTE and LTE-Advanced systems.

The OTN solution meets the 3GPP specifications for end-to-end latency and jitter while multiplexing multiple CPRI signals onto a single 10G wavelength. PMC said this OTN fronthaul architecture substantially reduces fiber consumption in the access network. The company is offering a reference design based on its existing HyPHY 20Gflex and HyPHY 10Gflex devices.

“Solving the mobile fronthaul networking challenge is the key to enabling C-RAN,” said Dr. Chih-Lin I, chief scientist of wireless technologies, China Mobile Research Institute, CMCC. “CMCC is looking for more cost-effective, scalable and carrier-grade fronthaul solutions. As the standard protocol for carrier-grade transport, OTN is a very compelling option and we’re excited to see ecosystem partners like PMC innovating to deliver solutions that address the networking needs of mobile fronthaul.”


“Distributed remote radios in a C-RAN architecture has tremendous potential to address expanding mobile capacity and coverage needs, but it creates a fronthaul networking problem that PMC has now solved,” said Babak Samimi, vice president of marketing for PMC’s Communications Business Unit. “PMC’s new OTN-based mobile fronthaul solution not only meets operator needs, it also allows carriers to build on their end-to-end OTN strategy and benefit from the operational efficiency and management simplicity that comes with a converged network.”

http://www.pmcs.com/fronthaul

Google Introduces Cloud Launcher

Google introduced Cloud Launcher -- a way for developers to launch more than 120 popular open source packages configured by Bitnami or Google Click-to-Deploy for Google Cloud Platform.

Cloud Launcher includes developer tools and stacks such as Apache Solr, Django, Gitlab, Jenkins, LAMP, Node.js, Ruby on Rails, and Tomcat. It also includes popular databases like MongoDB, MySQL, PostgreSQL and popular applications like Wordpress, Drupal, JasperReports, Joomla and SugarCRM.

Google said it is optimizing many of these packages specifically for Google Cloud Platform.

http://googlecloudplatform.blogspot.com/2015/03/deploy-popular-software-packages-using-Cloud-Launcher.html

Latest Puppet Labs Release Can Provision Docker, AWS, Bare Metal

The latest software update from Puppet Labs (Enterprise 3.8) brings provisioning capabilities for Docker containers, AWS infrastructure and bare metal.

Puppet Node Manager, released late last year, initially included a rules-based method to organize servers based on key characteristics, such as application, role, data center, operating environment, and geographic location. With Puppet Enterprise 3.8, Puppet Node Manager includes capabilities for automating the provisioning of infrastructure, from containers to bare metal.

“Businesses are adopting DevOps tools and practices because they are under tremendous pressure to deliver new and reliable services faster, across an ever-expanding set of infrastructure technologies, “ said Nigel Kersten, CIO of Puppet Labs. “By adding support for Docker, AWS and bare metal, Puppet Enterprise 3.8 makes it faster and easier to provision and manage nearly any infrastructure technology. Now, IT teams can focus less time on managing change, and more time driving change throughout their organizations.”

https://puppetlabs.com/

Wednesday, March 25, 2015

OIF Shows 56G Electrical Interfaces & CFP2-ACO

At this week's OFC exhibition in Los Angeles, the Optical Internetworking Forum (OIF) is showcasing the first electrical interfaces running at 56 Gbps, effectively doubling the current 28G electical interface specification.  The OIF has five CEI-56G specifications are under development, such as platform backplanes and links between a chip and an optical engine on a line card.

To address power consumption issues, the OIF is pursuing two parallel tracks: using 56 Gigabit non-return-to-zero (NRZ) signalling and 4-level pulse amplitude modulation (PAM-4) which encodes two bits per symbol such that a 28 Gbaud signalling rate can be used. The 56 Gig NRZ uses simpler signalling but must deal with the higher associated loss, while PAM-4 does not suffer the same loss as it is similar to existing CEI-28 channels used today but requires a more complex design.

More online...

http://www.oiforum.com/oif-shows-56g-electrical-interfaces-cfp2-aco/

CommScope Demos WideBand Multimode Fiber for 100G Short WDM

CommScope demonstrated 100 Gbps Ethernet applications using short wavelength division multiplexing (SWDM) over wide band multimode fiber (WBMMF). The technology is targeted at high bandwidth applications in high-performance data centers.  The demonstration at this week's OFC in Los Angeles was held in partnership with Finisar, which supplied the 100G transceivers for use with the CommScope LazrSPEED 550 WideBand multimode fiber.

“We have been working with our partners on advancing the capabilities of high-speed transmission over multimode fiber and we believe this demonstration will show how far we have come in providing another cost-effective solution to support future data center needs,” said Kevin St. Cyr, senior vice president of Enterprise Solutions, CommScope. “The LazrSPEED WideBand multimode fiber will enable migration from 10 to 40 to even 100 Gigabit speeds over a single fiber pair, as well as provide customers legacy support for existing applications.”

http://www.commscope.com/

Ciena Joins NSF's GENI Project

Ciena has joined the National Science Foundation’s (NSF) Global Environment for Network Innovations (GENI) project that supports "at scale" research in networking, distributed systems, cloud services, security, and novel applications.

GENI provides access to hundreds of widely distributed resources, including virtual machines and “bare-machines.”  The company said that by connecting GENI’s multi-site cloud computing resources with its testbed, its researchers’ gain greater ability to collaborate with external researchers via a multi-directional interconnected system to test new applications on a large scale network and give assurance of their real-world viability. For example, this can be used to test new network function virtualization (NFV) applications like virtual WAN optimization or network security.

“Ciena’s collaboration with the National Science Foundation’s GENI project will help drive continued exploration of advanced network enabled applications and support the creation of more programmable, agile networks that are essential in today’s web-scale world,” stated Rod Wilson, Senior Director of External Research, Ciena.

http://www.ciena.com/about/newsroom/press-releases/Ciena-Joins-National-Science-Foundations-GENI-Project.html

http://www.geni.net/

ZTE Posts 2014 Profit of RMB 2.63 Billion

ZTE reported a net profit of RMB 2.63 billion (US$423.5 million) in 2014. Basic earnings per share climbed to RMB 0.77, while revenue rose 8.3% to RMB 81.47 billion.

ZTE posted revenue of RMB 40.89 billion from international operations, accounting for 50.2% of revenue. Operations in China contributed revenue of RMB 40.58 billion.

http://www.zte.com.cn

Harmonic Debuts Integrated Receiver-Decoder With HEVC

Harmonic introduced the first single-rack, multiformat, integrated receiver-decoder (IRD), transcoder and MPEG stream processor to support the HEVC standard, enabling video content and service providers to decode HEVC compressed streams up to 1080p60 resolution.

The 1-RU chassis ProView 7100 IRD platform offers broadcast-quality SD/HD MPEG-2, MPEG-4 AVC and HEVC decoding, in addition to MPEG-2 and AVC transcoding.  It supports AVC HD and HEVC 4:2:2 10-bit decoding up to 1080p60. The HEVC decoding capabilities are available to new and existing ProView 7100 customers via a simple software update and license key.

"The ability to decode HEVC compressed streams is becoming important for video content and service providers as they prepare to deliver high-quality, bandwidth-intensive services like Ultra HD and 4K," said Bart Spriester, senior vice president, video products, Harmonic. "As the world's first IRD platform capable of decoding HEVC content, the ProView 7100 continues to prove that it's the best solution for content reception applications, providing TV operators with the flexibility, scalability, video compression efficiency and low total-cost-of-ownership they need to cost-effectively deliver video offerings with amazing quality now and in the future."

http://www.harmonicinc.com/

Luxtera Debuts 100G QSFP28 Module and Silicon Photonics Chipset

At this week's #OFC2015 in Los Angeles, Luxtera confirmed commercial availability of its 100G-PSM4 compliant chipset and QSFP optical module. The company said its low cost single mode products  make it well positioned for an industry-shift from copper and legacy multimode fiber to single mode fiber at volume scale.

LUX42604 Key Features

  • 100Gb optical transceiver
  • QSFP28 compliant module form-factor
  • Four 4 x 26 Gbps independently operating channels, full-duplex operation
  • Multirate: 1 – 25.78 Gbps (per channel)
  • FEC not required for error free operation but also supports Clause 74 and 91 FEC
  • 1310nm PSM4 MSA compliant – as described by www.psm4.org.
  • Proven Light Source and Packaging Technology
  • Extended Reach Up to 2000 Meters
  • Less than 3.5W worst case power

“In 2015, hyperscale data centers are undergoing a tectonic shift as the industry moves to 100Gb, and single mode photonics replace copper to become the mainstream interconnect. Luxtera is at the forefront of this transition with the only optical transceiver technology that can deliver 100Gb speeds with up to 2km of reach at the aggressive cost points needed for these high volume deployments. Today we are introducing our first Hybrid Silicon Photonics architecture products including the industry’s first 1310nm 100G-PSM4 MSA compliant QSFP28+ pluggable module and a fully integrated SiP PSM4 chipset,” said Greg Young, President and CEO of Luxtera.  “Luxtera pioneered the field of Silicon Photonics starting in 2001 and has been in continuous production since the original introduction of 40Gb SiP AOCs in 2008. With these new products we are addressing connectivity needs of hyperscale/cloud and enterprise datacenters with standard compliant products. We look forward to moving further into these core markets by delivering additional high performance single mode fiber solutions."

http://www.luxtera.com

Tuesday, March 24, 2015

Verizon Picks Cisco and Ciena for Advanced 100G Metro Network

Verizon has selected Ciena and Cisco as vendors for its next generation metro optical network.

Specifically, Verizon will test and deploy Ciena’s metro-optimized 6500 packet optical technology and the Cisco Network Convergence System on portions of its 100G metro network this year, with plans to turn up live traffic in 2016. Supplier volumes will be guided by ongoing testing, support and performance.

“Deploying a new coherent, optimized and highly scalable metro network means Verizon stays ahead of the growth trajectory while providing an even more robust network infrastructure for future demand,” said Lee Hicks, vice president of Verizon network planning. “Ciena and Cisco met not only our technology requirements but the aggressive timeline to deploy our next-generation 100G-and-above metro network.”

“In today's Web-scale world, advanced, next-generation metro networks with high degrees of packet convergence and software intelligence are critical to the future of connecting increasing amounts of content to users,” said Francois Locoh-Donou, senior vice president, Global Products Group at Ciena. “Leveraging the latest capabilities in our 6500 platform for metro applications where density, scale and cost are equally important, Verizon will benefit from an end-to-end solution that can deliver a truly on-demand experience for its customers.”

“Verizon and Cisco are long-standing technology and business partners, and we are pleased to play a key role in Verizon’s optical network modernization program. Cisco has made key investments in next-generation optical technologies to enable Verizon to realize its vision to transform its network architecture to achieve the speed and operational efficiency required to meet the demands of today, while capturing growth opportunities over the next decade,” stated Said Kelly Ahuja, senior vice president of Cisco’s Service Provider Business group.

http://www.verizon.com/about/news/verizon-deploy-next-generation-100g-metro-network-us/

Blueprint: Beyond 100G in Core Networks – Is Coherent Technology Reaching a Plateau?

by Maxim Kuschnerov, Coriant

100G coherent technology has paved a successful path in terrestrial core and submarine networks since its introduction in 2010. In core networks, a figurative marketing war on beyond 100G capacity has been taking place for some time, with vendors announcing 200G, 400G, and IT transport solutions. However, it has been impossible to ignore the fact that beyond 100G tunable line side interfaces do not live up to the general evolutionary trend of 10G to 100G. While the previous per-channel capacity step represented a 10-fold increase without sacrificing reach or channel-count, a similar step seems very unlikely for interfaces beyond 100G.

Flexi-rate Interfaces - Not Quite Yet What you Would Expect

100G connectivity in the core started out with a 4QAM/QPSK modulation scheme, as shown in Figure 1, where binary electrical signals are converted to a format with four constellation points, which is transmitted in two orthogonal polarizations. The applied coherent detection technology is capable of detecting arbitrary multi-level schemes, which can be used to transmit more bits per time slot. Borrowing from a 30 to 40 year old playbook from wireless communications, optics turned its eyes to more flexible modulation formats like 200G 16QAM (see Figure 1) to increase capacity throughput. While the capacity increases by 100% compared to the classic 100G 4QAM, the reach is roughly a quarter. After a limited market introduction in 2014, this year we will see the first wave of commercial 100G/200G 16QAM interfaces. However, 200G 16QAM leaves no room for margin in manufacturing and does not have the wide appeal of a carrier-grade interface due to its inherent performance limitations. While sufficient to cover a portion of demands in long-haul networks, it is not quite the game changer.

When analyzing the actual reach requirements of core network demands it is clear that a more powerful solution to the minimal reach of 16 QAM transmission is required. Fully flexible transceivers should include a middle ground format of 8QAM. With reach of up to 2,000km 8QAM based solutions hits an ideal sweet spot in core networks while still providing an increase in spectral efficiency of 50%. Wide deployment of flexi-rate interfaces in core networks will not come until the adaptation of the 8QAM format is included in the solution, then living up to the promise of a single-spare fully flexible line interface. Figure 1 illustrates the reaches of a flexi-rate interface with multiple modulation schemes on a cumulative distribution of demands in core networks. 8QAM is clearly the undeniable working horse.


Figure 1: Applying flexi-rate interfaces to core networks with Raman amplification (Note: absolute distances of each scheme depends on fiber and amplifier type, span losses, channel counts, end of life margins, and error correction limits.)

Pushing the Limits – What’s Next in Terms of Differentiation

Flexi-rate interfaces for core optical networks are coming close to the theoretical boundaries of maximum channel capacity. It is virtually impossible to deliver a 400G or 1T long-haul interface while keeping channel count and network architecture the same. Digital signal processing offers still some room for improving error correction codes or the holy grail of fiber optic communication – i.e., algorithms for the compensation of fiber nonlinearity – but the return on investment diminishes drastically. Going forward, optical layer technology like Raman amplification or C+L band systems will be quintessential to increase core network capacity without requiring completely new fiber transmission technologies. Figure 2 shows an overview of techniques going forward for fiber capacity increase.
Figure 2: Improvements for core network channel capacities going forward vs. state-of-the art coherent interfaces

It is clear that the majority of innovation for capacity resides in the optical layer and no longer in signal processing chips. Since these integrated circuits become more expensive with each generation, their product definition has to find a good balance between development costs, power consumption, and feature set. Fighting for a 10% reach improvement with a disproportionately high investment cost is unlikely to lead to a profitable business model for many vendors. Moreover, optimization for very high-end optical performance is likely to reduce the viability of these solutions for lower end applications such as metro transport or datacenter interconnects, which are driven by low power and high density requirements. Thus, the trend for 400G/1T interfaces will shift away from pure optical performance improvements which are valuable only in long haul applications and instead focus more on solutions that can leverage the same design across multiple markets spaces, while delivering the most flexible level of architectural feature integration at the lowest power consumption. This reflects a similar experience in consumer market. While processing speed was one of the major buying criteria in the first age of personal computing, the value perception has shifted towards the application or the battery life of the device. The actual processing abilities of a smart phone or a laptop become of much lesser importance if not practically irrelevant.

Evolution of Core Networks in Light of the 100G Metro Surge

100G is on its path conquering the metro market using a mix of coherent and direct detect pluggable interfaces. Coherent technologies designed for the higher end of the metro market (>40-80km) will inevitably take a large share of the long-haul market. This mostly depends on each vendor’s ability to deliver low power flexi-rate interfaces. While these do not require high-end error correction abilities or highest performing optics, the reach and cost position of these interfaces will make the long-haul market an offer that it simply can’t refuse. A true long-haul network equipment manufacturer will not be able to survive without the mix of high-end and low-end coherent interfaces. While the earlier are likely to be proprietary and more power hungry, the lower end segment is on its way towards generic pluggable interconnects. Figure 3 highlights possible market coverage of several competing interface technologies. 

Figure  3 – Technology market segmentation for colored interfaces

In conclusion, the way forward to 1T interfaces is not a naturally outlined evolutionary step. Multi-channel interfaces will be required for both short reach and long-haul. While the war on costs in core networks is far from over, it looks like the industry is about to experience a different innovation pace in the optical performance craze.

With the performance of digital signal processing chips leveling out, the further evolution of photonic components could be key to enabling the next wave of core interconnects.

About the Author

Dr. Maxim Kuschnerov is a Product Manager at Coriant, Munich, responsible for high-speed interfaces and photonic layer technology. Since 2007, he worked for Coriant (former Nokia Siemens Networks) focusing on the development of signal processing concepts and coherent optical transceivers. He has authored and coauthored more than 100 peer-reviewed papers and conference contributions. Moreover, he was a project leader in the advanced research project ModeGap, developing space division multiplexing network technology and pushing the photonic layer vision beyond 2020.



Got an idea for a Blueprint column?  We welcome your ideas on next gen network architecture.
See our guidelines.

Huawei and China Mobile Demo Cloudified VoLTE

Huawei demonstrated a virtualized VoLTE solution designed specifically to support China Mobile’s Cloudified VoLTE service. The demonstration featured NFV-based core network elements, including a virtualized IP Multimedia Subsystem (vIMS), a virtualized evolved packet core (vEPC), a virtualized subscriber data management (vSDM), and a virtualized policy and charging rules function (vPCRF).

The Huawei Cloudified VoLTE solution runs on Huawei commercial off-the-shelf (COTS) hardware servers and cloud operating system.

http://pr.huawei.com/en/news/hw-419356-volte.htm#.VRI4NY6jOM4

Avago Shows Next Gen Optical Transceivers

At this week's OFC in Los Angeles, Avago Technologies ts latest optical transceiver technologies for next generation data center and enterprise storage applications.

Highlights:
  • VCSEL-based optical PAM-4 technology for next generation optical transceivers
  • Extended-reach 100G QSFP28 eSR4 transceivers communicating over 300m MMF
  • 128GFC QSFP28 transceiver interoperating with 32GFC SFP+ transceivers
  • 40G BiDi MMF QSFP+ transceivers operating over duplex fiber
  • PCIe-over-Optics ToR switch solution enabling high density rack connectivity

"Avago has consistently been in the forefront of data center technologies," said Philip Gadd, senior vice president and general manager of the Fiber Optics Product Division at Avago. "The great breadth of our new technologies showcasing at OFC 2015 further demonstrates Avago's leadership and continued commitment to addressing the growing data center market."

http://www.avagotech.com

Broadcom Expects Rapid Adoption of 40/50/100 GbE PHYs

Broadcom expects rapid adoption of its latest 40/50/100 Gigabit Ethernet (GbE) PHY in pluggable QSFP+ optical and DAC modules. The company cites multiple OEM and ODM vendors that have adopted the devices for immediate implementation. Sampling is underway.

The Broadcom PAM4 devices enable transmission rates of 40/50 gigabits per second (Gbps) over the existing infrastructure and are optimized for use in 40G quad small form-factor pluggable (QSFP) optics and direct attach copper (DAC) applications.

"The rapid adoption and support of our PAM4 technology by our leading customers and partners reinforces Broadcom's leadership in wired physical layer devices," said Lorenzo Longo, Broadcom, Vice President and General Manager, Physical Layer Products. "Our devices are designed to support higher data throughput over existing low bandwidth channels by transmitting more bits per symbol, significantly reducing cost by eliminating the need for expensive interconnect media."

Key Features:

  • Single 40/50GbE PHY drives 40/56G serial over various media
  • Supports a variety of DAC reaches from multiple suppliers
  • Enables SMF/MMF optics and silicon photonics
  • Low-power 28 nm CMOS design
  • Small 7x7mm package fits within QSFP+ form factor, cable assembly and optics modules

http://www.broadcom.com

GigOptix Samples its 3rd Gen 100Gbps Ethernet Chipset

GigOptix announced its 3rd generation chipset for 100Gbps Ethernet datacenter and cloud computing applications.

The HXT8204 28Gbps 4 channel VCSEL driver array and HXR8204 28Gbps trans-impedance amplifier (TIA) receiver array enable the next generation of lower power 100Gbps Ethernet SR4 module and Active Optical Cable (AOC) solutions.

The HXR8204 four channel receiver with integrated TIA provides 60uAPP input sensitivity at 28Gbps with 10-12 Bit Error Rate (BER), AGC and ATC, and a limiting post amplifier stage. The HXT8204 four channel VCSEL driver supports modulation and average VCSEL currents up to 10mA with a dedicated BURNIN capability up to 15mA average current. The 1MHz I2C interface enables full control of all driver functions including input equalization, output peaking and peaking duration, Signal Detect and Squelch, channel polarity inversion, diagnostics such as average current and temperature monitoring as wells as user maskable Interrupts and VCSEL voltage supervisory functions.

“GigOptix is proud to announce our latest 100Gbps Ethernet chipset for the Datacom Ethernet market, which is expected to show 60% CAGR over the next seven years,” said Tom Kapucija, Datacom Marketing Director. “Our third generation solution enables a 20% typical reduction in power dissipation over our earlier chipset solutions without sacrificing performance or robustness. In addition, in certain applications such as Active Optical Cables we see up to 30% power reduction.”

http://www.gigoptix.com

Mellanox Intros Next Gen 100 Gbps Silicon Photonics Transceivers

Mellanox Technologies introduced three new LinkX 100 Gb/s solutions that support the high-density, low-power, QSFP28 connector-based Switch-IB switch platform.

The Switch-IB 36-port 100Gb/s InfiniBand switch delivers 7.2Tb/s of aggregate throughput in a 1U, making it the world’s highest performance, ultra-dense end-to-end platform. Mellanox said the robustness and density of standard QSFP connectors and cables enables 100Gb/s networks to be as easy to deploy as 10Gb/s.

Some highlights from #OFC2015

  • 100Gb/s Silicon Photonics Transceivers: 100Gb/s 1550nm Parallel Single Mode transceiver in the QSFP28 form factor, capable of reaches up to 2km.
  • 100Gb/s VCSEL Transceivers: 100G VCSEL transceiver in the QSFP28 form factor with reaches of 100m over multi-mode fiber (MMF).
  • 100Gb/s Splitters to connect 100G ports to 25G and 50G ports: new copper splitter breakout cables efficiently interconnect 100Gb/s QSFP28 switch ports to a new generation of high performance servers and storage appliances with 25G and 50G ports. Using zero power, they are the low-power, green solution for connectivity inside the rack.

At #OFC2015, Mellanox is also showing its ConnectX-4 100Gb/s interconnect adapters which deliver 10, 20, 25, 40, 50, 56 and 100Gb/s throughput supporting both the InfiniBand and the Ethernet standard protocols.

http://www.mellanox.com

Videos

Loading...